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RE: Application - Call for submissions: Best practices in conservation, restoration, a
nd sustainable use of rangelands as nature-based solutions - Shikui Dong .

BN Srijana Joshi Rijal <Srijana.Joshi@icimod.org>

i B 2024F12811H(28=) B t11:48

BN : B <dongshikui@bjfu.edu.cn>

2 1= Yi Shaoliang <Yi.Shaoliang@icimod.org>

i #F: 2 4 ( [W]Vendor ID Template.docx... ) gEev |8

Dear Prof Dong,

Greetings from ICIMOD

We hope this email finds you well. We are pleased to inform you that you have been awarded a grant
of USD 1000 to prepare detailed documentation of best practices. We will share the outline of the
best practices for detailed documentation. We kindly request you to provide your BANKING DETAILS
s0 that we can facilitate the transfer of the grant amount. We will appreciate if you can submit you
banking details and fill the vendor form and share the void cheque ( as attached for reference) by
13th December

Looking forward to receiving your information

Regards,

Srijana

ICIMOD
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Shikui Dong - Yong Zhang - Hao Shen - Shuai Li - Yudan Xu
Grasslands on the Third Pole of the World

Structure, Function, Process, and Resilience of Social-Ecological Systems

This book comprehensively covers the topics of origin and distribution, evolution and
types, regional and global importance, biodiversity conservation, plant-soil interfaces,
ecosystem functions and services, social-ecological systems, climate change adaptations,
land degradation and restoration, grazing management and pastoral production, and
sustainable future of the grasslands on the Qinghai-Tibetan Plateau (QTP), which is a
globally unique eco-region called the “Roof of the World” because of its high elevation,
“Third Pole on Earth” because of its alpine environment and the “Water Tower in Asia”
because of its headwater location. The grassland ecosystem covers above 60% of QTP,
which is about 2.5 million km?, 1/4 of Chinese total territorial lands.

The grassland ecosystem of the QTP (the Third Pole) is an important part of the palaearctic
region, which features alpine cover and low oxygen. The Third Pole’s grasslands not
only provide important ecosystem functions such as biodiversity conservation, carbon
storage, water resource regulation, climate control, and natural disaster mitigation at a
global scale, but also provide critical ecosystem services such as pastoral production,
cultural inheritance, and tourism and recreation at local and regional scales.

The purposes of this monograph are to address the following questions: (1) What are
the special features of the Third Pole's grasslands? (2) How have climate changes and
human activities changed the structures and functions of the Third Pole’s grasslands?
(3) How can we cope with land degradation and climate change through innovative
restoration and protective actions for Third Pole’s grasslands? And (4) How can we
promote the sustainable development of social-ecological systems of the Third Pole's
grasslands through best management practices including grazing? The goal of this book
is to attract the attention of international audiences to realize the importance of the Third
Pole’s grasslands, and to call for the actions of global communities to effectively protect
and sustainably use the Third Pole’s grasslands. This book can be served as textbooks,
teaching materials and documentaries for different audiences. The target audiences
include students, teachers, researchers, policy makers, planners, government officials,
and NGOs in agricultural, environmental and natural resources sectors.

ISBN 978-3-031-39484-3

9178

7830311394843

» springer.com

ny - 17- udys - bueyz - buog
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Shikui Dong - Yong Zhang
Hao Shen - Shuai Li - Yudan Xu

Grasslands
on the Third Pole
of the World

Structure, Function, Process, and

Resilience of Social-Ecological Systems

» S A Ny

@ Springer
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Contrasting drought sensitivity of Eurasian
and North American grasslands
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Extreme droughts generally decrease productivity in grassland ecosystems'> with

negative consequences for nature’s contribution to people*”. The extent to which this
negative effect variesamong grassland types and over time in response to multi-year
extreme drought remains unclear. Here, using a coordinated distributed experiment
that simulated four years of growing-season drought (around 66% rainfall reduction),
we compared drought sensitivity within and among six representative grasslands
spanningbroad precipitation gradients in each of Eurasia and North America—two of
the Northern Hemisphere’s largest grass-dominated regions. Aboveground plant
production declined substantially with drought in the Eurasian grasslands and the
effects accumulated over time, while the declines were less severe and more muted
over timein the North American grasslands. Drought effects on species richness
shifted from positive to negative in Eurasia, but from negative to positive in North
Americaover time. The differing responses of plant production in these grasslands
were accompanied by less common (subordinate) plant species declining in Eurasian
grasslands butincreasingin North American grasslands. Our findings demonstrate
the high production sensitivity of Eurasian compared with North American grasslands
to extreme drought (43.6% versus 25.2% reduction), and the key role of subordinate
species in determining impacts of extreme drought on grassland productivity.

The severity and frequency of extreme climate events have increased
substantially due to global environmental change, often with dev-
astating consequences®. For example, extreme droughts can cause
widespread damage to regional economies, environments and human
health®°. Previous studies have shown that extreme droughts can have
profound impacts on ecosystem functioning®, such as substantially
reducing plant productivity"**’—a fundamental component of the
global carbon cycle®?. As climate models predict future increases in
the probability of multi-year extreme drought events in many regions
of the world®™, there is a pressing need to understand their impacts
on ecosystem function. Such understanding is crucial for accurate

assessments of ecosystem resistance to climate change, as well as for
the provisioning of ecosystem services.

Theoretical studies have put forward two different hypotheses
regarding the response of ecosystem productivity to multi-year
extreme drought: the stress-accumulation hypothesis suggests
that the negative effects of drought increase with duration; and
the drought-acclimatization hypothesis postulates that the nega-
tive effects of drought stabilize or even diminish with duration'®.
Although multi-year extreme drought experiments are relatively
rare, their results provide support for both theories. For example, in
asemi-arid grassland in China, drought impact was accumulative?,

'School of Grassland Science, Beijing Forestry University, Beijing, China. 2State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China. *State Key
Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences,
Beijing, China. “Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese
Academy of Agricultural Sciences, Beijing, China. *National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning,
Chinese Academy of Agricultural Sciences, Beijing, China. °Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Urat Desert-Grassland Research Station, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China. ’Liaoning Northwest Grassland Ecosystem National Observation and Research Station; Erguna
Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China. ®College of Agro-grassland Science, Nanjing Agricultural University,
Nanjing, China. °Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA. °Department of Biology, University of New Mexico,
Albuquerque, NM, USA. "Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA. *Ecology and Biodiversity Group, Department of Biology,
Utrecht University, Utrecht, The Netherlands. *College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China. “School of Life Sciences, Hebei University, Baoding, China.
®Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration,
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Aridity modulates grassland biomass
responses to combined droughtand

nutrientaddition
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Plant biomass tends to increase under nutrient addition and decrease
under drought. Biotic and abiotic factors influence responses to both,
making the combined impact of nutrient addition and drought difficult

to predict. Using a globally distributed network of manipulative field
experiments, we assessed grassland aboveground biomass response to
both drought and increased nutrient availability at 26 sites across nine
countries. Overall, drought reduced biomass by 19% and nutrient addition
increased it by 24%, resulting in no netimpact under combined drought
and nutrient addition. Among the plant functional groups, only graminoids
responded positively to nutrients during drought. However, these general
responses depended on local conditions, especially aridity. Nutrient
effects were stronger in arid grasslands and weaker in humid regions and

nitrogen-rich soils,

although nutrient addition alleviated drought effects

the mostin subhumid sites. Biomass responses were weaker with higher
precipitation variability. Biomass increased more with increased nutrient
availability and declined more with drought at high-diversity sites than at
low-diversity sites. Our findings highlight the importance of local abiotic
and biotic conditions in predicting grassland responses to anthropogenic
nutrient and climate changes.

Nutrient inputs and extreme droughts are increasing in terrestrial
ecosystems worldwide owing to global changes'?, even in already
colimited grasslands where plant growth is constrained by water and
nutrients®*. Resource supplies (for example, nutrient availability or soil
moisture) often affect grasslands, causingincreases (for example, nutri-
ent addition) and reductions (for example, drought) in aboveground
biomass®®. Combined effects of drought and nutrient increases can
yield a proportional impact, equivalent to the sum of their individ-
ual effects. However, non-proportional effects resulting in higher or
lower responses than this sum can arise when one factor exacerbates
or diminishes the effect of the other (for example, nutrient addition
intensifying theimpact of drought, and drought reducing nutrient-use
efficiency)’. Nutrients canalso buffer theimpacts of drought, especially
in colimited grasslands'. Variations in responses depend on soil water
availability”, the plant community'? and species-specific stoichiometric

needs for water and nutrients'. Thus, nutrient addition can shift plant
community interactions", affecting drought sensitivity”, and drought
canreduce productivity, diminishing nutrient sensitivity'®. Understand-
ing the mechanisms underlying these effects is crucial for predicting
responses to climate-change-induced increases in drought frequency
and nutrient availability.

Biotic factors such as plant richness and species abundance”,
along with abiotic factors including water availability, interannual pre-
cipitation variability and soil texture, contribute to different responses
to drought and nutrient addition™. Aridity critically modulates the
responses of plant species to these factors”. In arid grasslands, water
is the primary limiting factor, heightening drought sensitivity®*°,
whereas subhumid grasslands are mainly colimited by nutrient and
water availability, and humid grasslands are typically limited by nutri-
ents or light?. High plant diversity and different functional groups may

e-mail: yug@bjfu.edu.cn
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Core microbes regulate plant-soil resilience
by maintaining network resilience during
long-term restoration of alpine grasslands
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The alpine grasslands of the Qinghai-Tibetan Plateau (QTP), the world’s high-
est plateau, have been severely degraded. To address this degradation, human-
involved restoration efforts, including grassland cultivation, have been
implemented. However, the impact of these practices on soil microbial com-
munity stability and its relationship with plant-soil system resilience has not
been explored. In this study, we evaluate the effects of grassland restoration
on microbial communities. We show that bacteria demonstrate higher com-
position resistance and resilience during the restoration process, when com-
pared to fungi. The changes we observe in microbial community interactions
support the stress gradient hypothesis. Our results emphasize the synergistic

role of network resilience and the restoration of the plant-soil system.
Importantly, we find that core microbial species significantly influence the
resilience of the plant-soil system by sustaining the co-occurrence networks.
These insights underscore the critical roles of microbial communities in
grassland restoration and suggest new strategies for boosting grassland resi-
lience by safeguarding core microbes.

The grasslands of the Qinghai-Tibetan Plateau (QTP), the highest pla-
teau in the world, are crucial for food supply, environmental con-
servation, and social development'. However, these alpine grassland
ecosystems have undergone significant degradation in recent decades
due to various drivers, including climate change, overgrazing, and
anthropogenic interventions®. Soil microorganisms, which encompass
a diverse and intricate array of biological communities that play a
crucial role in organic matter decomposition, nutrient cycling and
maintaining soil functionality in grassland ecosystems’. Notably, soil
bacteria and fungi respond differently to environmental filtering,
thereby influencing the distribution and diversity of the soil microbial
community*’. Mean annual temperature and aboveground net pri-
mary productivity are determining factors for changes in fungal
diversity, soil pH, and N:P ratio are determining factors for changes in

bacterial diversity’. While the significance of microorganisms in
restoring degraded grasslands is well-recognized, there remains a
notable gap in research regarding the disparities in soil microbial
diversity, the relationship between bacteria and fungi, as well as the
complexity and stability of the microbiome. Addressing these knowl-
edge gaps is crucial for developing effective strategies to restore and
preserve the fragile alpine grassland ecosystems of the QTP.

The stability of an ecosystem in the face of disruption hinges on its
resistance and resilience®. Referring to the concept of Griffiths’ and
Gao® et al., stability of microbial community can be defined as the
ability of a microbial community’s composition and network to resist
environmental disturbances (resistance) and to recover to its original
state after the disturbance is eliminated (resilience). Such stability is
influenced not only by the composition of its community, but also by
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The global potential for mitigating
nitrous oxide emissions from croplands
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SUMMARY

Agricultural activities contribute almost half of the total anthropogenic nitrous oxide (N,O) emissions, but
proper assessment of mitigation measures is hampered by large uncertainties during the quantification of
cropland N,O emissions and mitigation potentials. This review summarizes the up-to-date datasets and ap-
proaches to provide spatially explicit and crop-specific assessment of the global mitigation potentials. Here,
we show that global cropland N,O emissions have quadrupled to 1.2 Tg N,O-N year ' over 1961-2020. The
mitigation potential is 0.7 Tg N>O-N without compromising the crop production, with 86% from optimizing
nitrogen fertilization, three-quarters (78%) from maize (22%), vegetables, and fruits (16%), other crops
(15%), wheat (13%), and rice (12%), and over 80% from South Asia, China, the European Union, other Amer-
ican countries, the United States, and Southeast Asia. More accurate estimation of cropland N,O mitigation
potentials requires extending the N,O observation network, improving modeling capacity, quantifying the

feasibility of mitigation measures, and seeking additional mitigation measures.

INTRODUCTION

Nitrous oxide (N2O) is a long-lived stratospheric ozone-depleting
substance and greenhouse gas, which has a 100-year global
warming potential 273 times higher than that of carbon dioxide."
The concentration of atmospheric N,O has increased by more
than 20% from 270 parts per billion (ppb) in 1750 to 331 ppb in
2018.2° Cropland is the largest contributor of anthropogenic
N>O emissions, accounting for approximately one-third of total
anthropogenic N,O emissions.” To sustain an increasing global
population and the demand for food, N,O emissions are pro-
jected to increase by 35%-60% between 2005 and 2030, largely
driven by excessive use of synthetic nitrogen (N) fertilizers and
manures to croplands.”® Reducing cropland N,O emissions
while maintaining crop production is thus conducive to achieving
low levels of climate warming and preventing stratospheric
ozone depletion. It is prerequisite to have a comprehensive un-
derstanding of cropland N,O production mechanisms and an ac-
curate assessment of cropland N,O emissions.”*®

Cropland N,O emissions is a net result of N,O production,
reduction, transformation, and diffusion through the soil layers
to the atmosphere,” with each process controlled by various
)

Gheck for
U

abiotic and biotic factors. Microbial metabolic pathways account
for approximately 70% of global N,O emissions, including mi-
crobial nitrification and denitrification. '® Key drivers of NoO emis-
sions influencing these processes include soil properties,
climate conditions, agricultural management practices, and mi-
crobial communities.'®'® A fair amount of research has explored
such key drivers of each specific process under various specific
conditions primarily based on field experiments or laboratory in-
cubations. However, the relative importance of each process to
N>O production under different environmental conditions re-
mains largely unknown, which is a barrier for accurate estimation
of cropland N,O emissions.

Significant efforts have been made to quantify cropland N,O
emissions from the field to regional and global scales, albeit large
uncertainties still exist.'*'® Uncertainties from direct measure-
ments lie in a deficit of coverage for the developing countries,
limited sampling frequency, replication, and lack of detailed re-
cords of site information (e.g., local microscale biophysical
characteristics and management history).”'® Large discrep-
ancies also exist among cropland N,O emission estimates
derived from different approaches (e.g., statistical upscaling
models, process-based models, and atmospheric inversion

One Earth 7, March 15, 2024 © 2024 Elsevier Inc. 401
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Phosphorus acquisition and pathogen
defense: synergies versus trade-offs

1,2,3,%

Wenli Ding (T 3Z#])", Shikui Dong (Z )", and Hans Lambers

During their life cycle, plants encounter simultaneous biotic and abiotic stresses.
A low availability of inorganic phosphorus (P) commonly limits plant growth in
natural and agricultural ecosystems. Pathogen attacks pose risks to plant pro-
ductivity and biodiversity, causing yield loss and ecosystem degradation. Plants
evolved various strategies to cope with P limitation, which, in turn, affect their re-
sistance to pathogens. However, a comprehensive understanding of how effi-
cient plant P-acquisition strategies influence their pathogen resistance under
P-limited conditions remains elusive. We highlight how these P-acquisition strat-
egies can enhance or decrease pathogen resistance through multiple mecha-
nisms. We advocate using this information to design more sustainable
agricultural systems and explain species turnover in natural ecosystems, espe-
cially in the context of global change.

The phosphorus-defense dilemma: how plants balance acquisition and protection
via root traits and symbioses

Phosphorus (P) is an essential plant nutrient. However, its availability is impacted by its strong
affinity for (hydr)oxides of aluminum (Al) and iron (Fe) in acid soils, as well as its precipitation
as calcium (Ca)-P in alkaline soils [1]. Consequently, the plant-available form of P, inorganic P
(P; orthophosphate) in the soil solution, is often limited in both natural and agricultural ecosys-
tems in the absence of fertilization, thereby constraining plant productivity [2,3]. In response,
plants have evolved various P-acquisition strategies, including root morphological, physiolog-
ical, and metabolic traits and symbiosis with arbuscular mycorrhizal fungi (AMF) (see
Glossary) [4-6]. Here, we classify these strategies as (i) nonmycorrhizal P-acquisition strat-
egies, which refer to root morphological, physiological, and plant-mediated microbial traits
that confer benefits for P uptake; and (i) mycorrhizal P-acquisition strategies, which
refer to the symbioses with AMF, ectomycorrhizal fungi (ECM), or ericoid mycorrhizas
that enhance P uptake.

Plants encounter a multitude of stresses in their environment. In addition to abiotic stresses such
as nutrient limitations, they are also challenged by biotic stresses such as pathogen attack. Plant
pathogens are microbes that exploit plants as sources of living space and nutrients and negatively
affect plant survival, growth, and reproduction. These pathogens include bacteria, fungi, viruses,
and oomycetes. Pathogenic microbes are pervasive, affecting every plant species and ecosys-
tem [7-9]. To survive and reproduce, plants have evolved an immune system that enables
them to counteract pathogen attack. Upon pathogen infection, plants strengthen physical bar-
riers that impede fungal colonization, such as reinforcing cell integrity through mechanisms
such as cell wall lignification and occluding xylem vessels with gums, gels, or tyloses [10,11]. Ad-
ditionally, plants can release antimicrobial compounds, such as saponins, phytoalexins such as
pisatin, phenolic compounds such as flavonoids, and defensins and enzymes that degrade

Trends in Plant Science, Month 2025, Vol. xx, No. xx
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Highlights

Plants may be exposed to phosphorus
(P) deficiency and pathogen attack si-
multaneously, and plant survival under
P limitation depends largely on the ability
to balance growth and defense.

Nonmycorrhizal P-acquisition strategies
incur increased susceptibility to patho-
gens because of reduced physical pro-
tection and diminished release of
defense-related products.

Mycorrhizal P-acquisition strategies en-
hance pathogen resistance through
physical protection and release of
defense-related products.

PHOSPHATE STARVATION
RESPONSE protein (PHR) plays a cen-
tral role in both P acquisition and plant
defense.
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Convergent gut microbial functional strategies drive
energy metabolism adaptation across Ursidae species
and challenge the uniqueness of giant panda
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Abstract

The gut microbiota is a key regulator of host energy metabolism, but its role in seasonal adaptation and evolution of bears is still
unclear. Although giant pandas are considered an extraordinary member of the Ursidae family due to their specialized herbivory and low
metabolic rate, there is still controversy over whether the metabolic regulation mechanism of their gut microbiota is unique. This study
analyzed the seasonal dynamics of gut microbiota in giant pandas (Ailuropoda melanoleuca), Asian black bears (Ursus thibetanus), brown
bears (Ursus arctos), and polar bears (Ursus maritimus), and combined with fecal microbiota transplantation (FMT) experiments, revealed
the following findings. The microbial composition of the four bear species is similar, with both Firmicutes and Proteobacteria dominating.
The enrichment of Firmicutes in winter enhances lipid metabolism, and adapts to dietary differences, indicating the existence of
convergent microbial functional strategies in the Ursidae family. Our results demonstrate that bear gut microbiota promoted seasonal
adaptation. In FMT experiments, bear gut microbiota in winter may had stronger functional capabilities on regulating host energy
metabolism in mice, and regulate host appetite to increase energy intake. Finally, despite feeding on bamboo, giant pandas microbiota
driven energy metabolism pathways (such as SCFAs) are highly conserved compared to other bears, suggesting a deep commonality in
the adaptability of bear microbiota in evolution. Therefore, this study challenges the traditional view of microbial uniqueness of giant
pandas, and emphasizes the co-evolutionary mechanism of energy metabolism adaptation in bear animals through microbial plasticity.
In the future, it is necessary to integrate wild samples to eliminate the interference of captive diet and further analyze the genetic basis
of host gut microbiota interactions.

Keywords: Ursidae; gut microbiota; FMT; energy metabolism; season

Introduction activation of lipogenesis-related genes to ensure efficient lipid
Seasonal fluctuations in mammalian energy metabolism are utilization [4]. Continuous metabolism-type: non-hibernators
adaptive responses to cyclic environmental resource variations, like polar bears rely on insulated fur to minimize heat loss
involving dynamic equilibria between food availability and [5], whereas giant pandas maintain energy homeostasis by
energy allocation (e.g. thermoregulation and reproduction). enhancing thermogenesis (e.g. TRPM8 inhibition-mediated cold
Ursidae, as a lineage with diversified energy strategies, exhibit tolerance) and microbial-driven cellulose fermentation [6]. Glant
metabolic patterns tightly linked to ecological behaviors. Active pandas lack endogenous cellulase genes [7] but depend on gut
species (e.g. brown bears, and Asian black bears) require microbiota for bamboo fiber degradation [8], suggesting microbial
sustained high-energy intake due to elevated activity levels, compensation in energy provision.

whereas low-metabolism species (e.g. giant pandas) adapt The gut microbiota, acting as a “second genome” for host
to resource constraints through behavioral adjustments (e.g. metabolism, responds to environmental fluctuations through
reduced locomotion) [1]. Current studies reveal two core strategies pathways such as short-chain fatty acid (SCFA) synthesis and
for ursids to cope with energy stress in the cold environment. lipid metabolism regulation [9]. For instance, hibernation-
Hibernation-type: brown bears and black bears accumulate associated gut microbiota remodeling in brown bears sustains
fat via hyperphagia in summer and reduce metabolic rates host lipid homeostasis [4], whereas seasonal dietary shifts
(body temperature drops by 30%-50%) during hibernation to (carnivory to herbivory) in polar bears significantly alter microbial
conserve energy [2, 3]. This process involves phase-specific composition [10]. However, current research on ursid microbial
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Role of gut microbiota in the postnatal
thermoregulation of Brandt’s voles
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Highlights
e Gut microbiota promote the development of
thermoregulation

e Butyric acid and bile acid participate in the thermoregulation
of pups

e These results expand the mechanism of postnatal
development of thermogenesis in mammals

) Bo et al., 2023, Cell Reports 42, 113021
e September 26, 2023 © 2023 The Author(s).
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In brief

Bo et al. use antibiotics to interfere with
the establishment of gut microbiota
during the development of Brandt’s voles
and determine their thermogenic
development and regulatory pathways.
They show a relationship between the gut
microbiota and the thermogenesis of
rodent pups and expand the mechanism
of postnatal development of
thermogenesis in small mammals.
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Does bumblebee preference of
continuous over interrupted strings
in string-pulling tasks indicate means-

end comprehension?
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Abstract Bumblebees (Bombus terrestris) have been shown to engage in string-pulling
behavior to access rewards. The objective of this study was to elucidate whether bumblebees
display means-end comprehension in a string-pulling task. We presented bumblebees with two
options: one where a string was connected to an artificial flower containing a reward and the
other presenting an interrupted string. Bumblebees displayed a consistent preference for pulling
connected strings over interrupted ones after training with a stepwise pulling technique. When
exposed to novel string colors, bees continued to exhibit a bias towards pulling the connected
string. This suggests that bumblebees engage in featural generalization of the visual display of
the string connected to the flower in this task. If the view of the string connected to the flower
was restricted during the training phase, the proportion of bumblebees choosing the connected
strings significantly decreased. Similarly, when the bumblebees were confronted with coiled
connected strings during the testing phase, they failed to identify and reject the interrupted
strings. This finding underscores the significance of visual consistency in enabling the bumble-
bees to perform the task successfully. Our results suggest that bumblebees’ ability to distinguish
between continuous strings and interrupted strings relies on a combination of image matching
and associative learning, rather than means-end understanding. These insights contribute to

a deeper understanding of the cognitive processes employed by bumblebees when tackling
complex spatial tasks.

eLife assessment

This study provides valuable new insights into insect cognition and problem-solving in bumblebees.
The authors present convincing evidence that bumblebees lack causal understanding in a string-
pulling task, and find support for bumblebees instead using image-matching for this task.

Wen, Lu et al. eLife 2024;13:RP97018. DOI: https://doi.org/10.7554/eLife.97018
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